INTRODUCTION AUX PROBABILITÉS Série 9

Exercice 1. Soient X une variable aléatoire continue et $S \subseteq \mathbb{R}$ un ensemble dénombrable. Montrez que $\mathbb{P}(X \in S) = 0$. Trouvez un exemple d'une variable aléatoire continue X et d'un ensemble $R \subseteq \mathbb{R}$ tels que R ne contienne aucun intervalle de longueur positive mais $\mathbb{P}(X \in R) = 1$.

Exercice 2. Soit X une variable aléatoire exponentielle de paramètre $\lambda > 0$.

- On dit qu'une variable aléatoire continue Y est sans mémoire si pour tout x, y > 0, on a $\mathbb{P}(Y > x + y \mid Y > y) = \mathbb{P}(Y > x)$. Montrez qu'une variable aléatoire exponentielle est sans mémoire. Réciproquement, démontrez que toute variable aléatoire positive, continue et sans mémoire suit la loi exponentielle.
- Montrez que |X| + 1 est une variable aléatoire. Quelle est sa loi?

Exercice 3. [Somme de variables aléatoires] En se basant sur la définition de variable aléatoire, montrez que si X, Y sont deux variables aléatoires définies sur le même espace de probabilité alors aX + bY est également une variable aléatoire pour tous $a, b \in \mathbb{R}$.

On notera qu'il s'agit d'une conséquence immédiate du Lemme 3.24 dans les notes de cours.

Exercice 4. Soit X une variable aléatoire. Montrez qu'on peut trouver un espace de probabilité ainsi que trois variables aléatoires indépendantes X_1, X_2, Z définies sur cet espace et telles que : Z est une variable aléatoire de Bernoulli à valeurs dans $\{0,1\}$; X_1 est une variable aléatoire continue; X_2 est une variable aléatoire discrète; $ZX_1 + (1-Z)X_2$ suit la même loi que X.

Exercice 5. Soit $\overline{X} = (X_1, \dots, X_n)$ un vecteur aléatoire admettant une densité. Soit E un sous-espace de \mathbb{R}^n de dimension strictement inférieure à n. Montrez que $\mathbb{P}(\overline{X} \in E) = 0$. En déduire en particulier que $\mathbb{P}(X_i = X_j \text{ pour certains } i \neq j) = 0$.

Exercice 6. [Possibles lois jointes pour des variables de Bernoulli] Soient X, Y deux variables aléatoires de Bernoulli définies sur le même espace de probabilité. Décrivez toutes les lois jointes possibles explicitement, c'est-à-dire en définissant les probabilités possibles $\mathbb{P}((X,Y)=(a,b))$ pour $a,b\in\{0,1\}$. De la même manière on donnera les fonctions de répartition associées à chacune de ces lois jointes.

0.1 \star Pour le plaisir (non-examinable) \star

Exercice 7. [Simple mais important] Soient $(\Omega_1, \mathcal{F}_1)$, $(\Omega_2, \mathcal{F}_2)$, $(\Omega_3, \mathcal{F}_3)$ des espaces mesurables. Supposons que $f: (\Omega_1, \mathcal{F}_1) \to (\Omega_2, \mathcal{F}_2)$ soit mesurable et que $g: (\Omega_2, \mathcal{F}_2) \to (\Omega_3, \mathcal{F}_3)$ soit mesurable. Montrez que $g \circ f: \Omega_1 \to \Omega_3$ est mesurable en tant qu'application de $(\Omega_1, \mathcal{F}_1)$ vers $(\Omega_3, \mathcal{F}_3)$.

Déduisez-en que si $\Phi: (\mathbb{R}^n, \tau_E) \to (\mathbb{R}^m, \tau_E)$ est une fonction continue et \overline{X} un vecteur aléatoire dans \mathbb{R}^n défini sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$, alors $\Phi(\overline{X})$ est un vecteur aléatoire dans \mathbb{R}^m , défini sur le même espace de probabilité.